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Quantum integrability of the generalized elliptic
Ruijsenaars models

Yasushi Komori† and Kazuhiro Hikami‡
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo,
Tokyo 113, Japan

Received 20 January 1997

Abstract. The quantum integrability of the generalized elliptic Ruijsenaars models is shown.
These models are mathematically related to the Macdonald operator and the Macdonald–
Koornwinder operator, which appeared in theq-orthogonal polynomial theories. We construct
these integrable families by using the Yang–Baxter equation and the reflection equation.

1. Introduction

The Ruijsenaars model [1] was introduced as a relativistic quantumN -body system in one
dimension, whose Hamiltonian was defined as

HA =
N∑
j=1

( N∏
k=1
k 6=j

√
ϑ1(zjk − µ)
ϑ1(zjk)

)
exp

(
β
∂

∂zj

)( N∏
k=1
k 6=j

√
ϑ1(zkj − µ)
ϑ1(zkj )

)

+
N∑
j=1

( N∏
k=1
k 6=j

√
ϑ1(zkj − µ)
ϑ1(zkj )

)
exp

(
−β ∂

∂zj

)( N∏
k=1
k 6=j

√
ϑ1(zjk − µ)
ϑ1(zjk)

)
. (1.1)

Here β and µ are constants, andzjk denoteszj − zk. The functionϑr(z) is the Jacobi
theta function (see the appendix for detail). This model is integrable and reduces to the
Calogero–Sutherland–Moser (CSM) model in the non-relativistic limit. The Hamiltonian
HA is invariant underzj ↔ zk, and called the A-type model. A D-type analogue of the
model exists, i.e. invariant underzj ↔ −zj andzj ↔ zk [2, 3]. In this context we propose
a new integrable Hamiltonian of type D, defined by

HD =
N∑
j=1

9j(z)
1/2 exp

(
2β

∂

∂zj

)
9j(−z)1/2

+
N∑
j=1

9j(−z)1/2 exp

(
−2β

∂

∂zj

)
9j(z)

1/2+90(z) (1.2)
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where functions9j(z) and90(z) are

9j(z) =
( N∏
k=1
k 6=j

ϑ1(zjk − µ)
ϑ1(zjk)

ϑ1(zj + zk − µ)
ϑ1(zj + zk)

)( 3∏
r=0

ϑr+1(zj − νr)
ϑr+1(zj )

ϑr+1(zj + β − ν̄r )
ϑr+1(zj + β)

)
(1.3a)

90(z) = −
3∑

p=0

(
π

ϑ ′1(0)

)2 2

ϑ1(−µ)ϑ1(−2β − µ)
( 3∏
r=0

ϑr+1(−β − νπpr )ϑr+1(−ν̄πpr )
)

×
( N∏
j=1

ϑp+1(zj − β − µ)
ϑp+1(zj − β)

ϑp+1(−zj − β − µ)
ϑp+1(−zj − β)

)
. (1.3b)

Hereπp denotes permutation;π0 = 1I, π1 = (01)(23), π2 = (02)(13), andπ3 = (03)(12).
We note that this model contains 10 parameters,β, µ, νr and ν̄r (r = 0, 1, 2, 3). The
potentials of these models are indeed elliptic functions, but only the trigonometric cases
have received much attention since the operatorsHA andHD are respectively related to
the Macdonald operator [4, 5] and the Macdonald–Koornwinder operator [6] in theq-
orthogonal polynomial theory. Recently it has been revealed that they can be treated
by means of the operator-valued solutions [7–10] of the Yang–Baxter equation (YBE)
and the reflection equation (RE), and that the affine Hecke algebra plays a crucial role
in the Macdonald theory [11–13]. Although some attempts have been made for the
quantum elliptic Ruijsenaars model and the quantum elliptic CSM model [14–17], the
systematic studies of these models are still lacking in contrast to the trigonometric case
or the classical case [18, 19]. In view of the elliptic Ruijsenaars model of type D, no
technical tools were known to work well, and the integrability was only conjectured by
using the direct construction of all the conserved operators and the direct calculation of the
commutativity [2, 3].

In this paper, we shall give a new construction of the Ruijsenaars model by using
the operator-valued solutions of the YBE and the RE. This method is quite different from
the existing ones, and works well even in the elliptic case. It can be clarified by pictorial
interpretation that the models are integrable and that commuting operators exist. In addition,
for the A-type model, all the conserved elliptic operators can be computed, and the duality
can easily be seen.

This paper is organized as follows. In section 2, we briefly review the operator-valued
solutions of the YBE and the RE following [10]. They respectively include one and four
arbitrary parameters besides a scaling factor. Based on these solutions, we prove the
integrability of the elliptic Ruijsenaars model of type A in section 3. We define a set
of mutually commuting difference operators and show that they coincide with the elliptic
Macdonald operators. The integrability of the Ruijsenaars model follows from the gauge
transformation of the elliptic Macdonald operator. The duality of the Macdonald operators
is also discussed. We shall apply the same scheme to the generalized elliptic Ruijsenaars
model. In section 4, we construct a family of commuting operators related to the RE. Our
integrable difference operators of type D can be regarded as a 10 parameter generalization of
the elliptic Macdonald–Koornwinder operators. In fact, we show that our operator includes
the previously known D-type operator studied in [2, 3]. The final section is devoted to
concluding remarks.
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2. Yang-Baxter equation and reflection equation

We consider solutions of the YBE and the RE [20, 21], respectively defined by

R12(ξ12)R
13(ξ13)R

23(ξ23) = R23(ξ23)R
13(ξ13)R

12(ξ12) (2.1)

R12(ξ12)
1
K (ξ1)R

21(ξ1+ ξ2)
2
K (ξ2) =

2
K (ξ2)R

12(ξ1+ ξ2)
1
K (ξ1)R

21(ξ12). (2.2)

Hereξj is called the spectral parameter, andξjk denotesξjk = ξj − ξk. The operatorRjk(ξ)

acts non-trivially on thej th andkth spaces, and
j

K (ξ) acts asK(ξ) only on thej th space.
Following an idea from [7, 8], we regardR(ξ) andK(ξ) as operators acting on functional

spaces. In this sense suchR- andK-operators may be viewed as an infinite-dimensional
representation for solutions of the YBE and the RE. Here, to study operator-valued solution
of the YBE (2.1) and the RE (2.2), we set theR- andK-operators acting on functional
space as [9]

Rjk(ξ) = A(zjk)− B(ξ, zjk)ŝjk (2.3)
j

K (ξ) = G(ξ, zj )−H(zj )t̂j (2.4)

where functionsA(z), B(ξ, z), G(ξ, z) andH(z) are to be determined. Operatorsŝjk and
t̂j are respectively an exchange operator and a reflection operator, satisfying relations,

ŝ2
jk = 1I ŝjk ŝkl = ŝkl ŝlj = ŝlj ŝjk ŝjkzj = zkŝjk
t̂2j = 1I t̂j ŝjk = ŝjk t̂k t̂j zj = −zj t̂j .

We suppose that the functionsB(ξ, z) andG(ξ, z) are odd,

B(ξ, z) = −B(−ξ,−z) (2.5)

G(ξ, z) = −G(−ξ,−z). (2.6)

As was proved in [13], we have functional equations as conditions to satisfy both the YBE
and the RE.

Proposition 2.1.The R-operator (2.3) satisfies the YBE (2.1) when functionsA(z) and
B(ξ, z) satisfy the following functional equations;

A(z1)A(−z1)− B(ξ, z1)B(ξ,−z1) = A(z2)A(−z2)− B(ξ, z2)B(ξ,−z2) ≡ c(ξ) (2.7a)

B(ξ1, z1)B(−ξ2, z12) = B(ξ12, z12)B(ξ1, z2)+ B(−ξ2,−z2)B(ξ12, z1). (2.7b)

Proposition 2.2.TheK-operator (2.4) and theR-operator (2.3) satisfy the RE (2.2) if the
following functional equations are fulfilled;

G(ξ1, z1)B(ξ1+ ξ2, z21)+G(ξ1, z2)B(ξ12, z12)+G(ξ2,−z1)B(ξ1+ ξ2, z1+ z2)

= G(ξ2, z2)B(ξ12, z1+ z2) (2.8a)

H(z1)H(−z1)−G(ξ, z1)G(ξ,−z1) = H(z2)H(−z2)−G(ξ, z2)G(ξ,−z2) ≡ d(ξ). (2.8b)

As explicit solutions of the functional equations (2.7) and (2.8), we have the following
theorems [8, 10].

Theorem 2.3.The ellipticR-operator, defined by

Rjk(ξ) = σµ(zjk)− σξ (zjk)ŝjk (2.9)

with arbitrary constantµ, satisfies the YBE (2.1).
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Theorem 2.4.With the ellipticR-operator (2.9), the ellipticK-operator defined by

K(ξ) =
3∑
r=0

grσ
r
2ξ (z)−

3∑
r=0

grσ
r
2ν(z)t̂ (2.10)

satisfies the RE (2.2). Here parametersν, gr (r = 0, 1, 2, 3) are arbitrary.

See [10, 13] for the proof of these propositions and theorems. We note that theR-
operator (2.9) and theK-operator (2.10) satisfy the unitarity conditions,

R12(ξ)R21(−ξ) = c(ξ)1I (2.11)

K(ξ)K(−ξ) = d(ξ)1I. (2.12)

Here functionc(ξ) is given asc(ξ) = ℘(µ)−℘(ξ). We do not use the explicit formd(ξ)
in the following.

3. Elliptic Ruijsenaars model of type A

The difference analogue of the elliptic CSM model was introduced by Ruijsenaars [1] for
A type, whose Hamiltonian is given by

HA =
N∑
j=1

( N∏
k=1
k 6=j

√
ϑ1(zjk − µ)
ϑ1(zjk)

)
exp

(
β
∂

∂zj

)( N∏
k=1
k 6=j

√
ϑ1(zkj − µ)
ϑ1(zkj )

)

+
N∑
j=1

( N∏
k=1
k 6=j

√
ϑ1(zkj − µ)
ϑ1(zkj )

)
exp

(
−β ∂

∂zj

)( N∏
k=1
k 6=j

√
ϑ1(zjk − µ)
ϑ1(zjk)

)
(3.1)

whereµ, β andτ are pure imaginary so that the Hamiltonian is Hermitian. We suppose that
the Ruijsenaars model consists of one-component boson, and that the HamiltonianHA (3.1)
acts on the symmetric space in coordinatesz1, z2, . . . , zN . Thus, hereafter we restrict our
discussions on the symmetric space, i.e. we replace exchange operatorsŝjk by 1I when they
are moved to the rightmost of the expression.

For later convenience, we introduce a gauge-transformed Hamiltonian as [17]

H̃A = 1−1/2
A HA1

1/2
A

≡M1(µ, β)+M1(−µ,−β). (3.2)

The function of the gauge transformation11/2
A is given by

1A =
N∏

j,k=1
j 6=k

(pvj/vk;p, q)∞
(pw−1vj/vk;p, q)∞

(qwvk/vj ;p, q)∞
(qvk/vj ;p, q)∞ (3.3)

where we set parameters asvj = e2π izj , w = e2π iµ, p = e2π iτ , andq = e2π iβ . The double
infinite product(x;p, q)∞ denotes

(x;p, q)∞ =
∞∏
m=0

∞∏
n=0

(1− xpmqn). (3.4)

To ensure the condition|p| < 1 and|q| < 1 for convergence, we setτ ∈ iR+ andβ ∈ iR+.
The difference operatorM1(µ, β) is computed as

M1(µ, β) =
∑

16j6N

( N∏
k=1
k 6=j

ϑ1(zjk − µ)
ϑ1(zjk)

)
Tj (β) (3.5)
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with the shift operatorTj (β) = exp(β ∂
∂zj
). In recent mathematical terminology, the

trigonometric limit of the operator (3.5) is called the (A-type) Macdonald operator, and
its eigenfunctions are known as the Macdonald symmetric polynomials [5].

We shall show, in this section, that the Ruijsenaars model, or the elliptic Macdonald
operator (3.2), is integrable, and thatN independent commutative operators exist including
the Hamiltonian (3.2);
• the higher-order Macdonald difference operators, which are defined by

Mn(µ, β) =
∑

I⊂{1,...,N}
|I |=n

( ∏
j∈I
k∈I c

ϑ1(zjk − µ)
ϑ1(zjk)

)
TI (β) (3.6)

form a commuting family. Here we setTI (β) =
∏
j∈I Tj (β).

• The Ruijsenaars model has a ‘duality’; the difference operatorsMn(−µ,−β) can be
written in terms ofM1(µ, β), . . . ,MN(µ, β).

We shall construct a set of the elliptic Macdonald operators (3.6) from the ellipticR-
operator (2.9), and prove that they constitute a mutually commuting family. For brevity,
we omitµ andβ inMn(µ, β) andTj (β), and denoteMn =Mn(µ, β), Tj = Tj (β) unless
explicitly indicated.

First we define a set of difference operatorsDn(ξ) = Dn(ξ1, . . . , ξN) as

Dn(ξ) =
N∏

m=N−n+1

( ←−N−n∏
k=1

Rmk(ξmk)

)
Tm. (3.7)

To clarify the structure of our difference operators, we assign a figure for each operator;

R jk.�/ =

=

�

j

j

k

Tj.�/

�

�

(3.8)

Using these figures, the difference operatorsDn(ξ) are depicted as follows. Note that both
ends of the figures are supposed to be connected.

1

= =

N

· · ·

· · ·

· · ·

D1.�/

2 N − 2 1 N2 N − 2N−1 N−1

(3.9a)
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1

= =

N

· · ·

· · ·

· · ·

D2.�/

2 N − 2 1 N2 N − 2N−1 N−1

(3.9b)

...

1 N2 N − 2 N−1 1 N2 N − 2 N−1

= · · ·

· · ·

· · ·

=DN−1.�/ (3.9c)

1 N2 N − 2 N−1 1 N2 N − 2 N−1

= · · ·

· · ·

· · ·

=DN.�/ (3.9d)

One sees the similarity betweenDn(ξ) andDN−n(ξ) from above figures. In fact this leads
us to an important property of the Macdonald operators, ‘duality’.

First we shall prove that difference operatorsDn(ξ) constitute a mutually commuting
family. Therein we use the following proposition.

Proposition 3.1.The ellipticR-operator (2.9) commutes withTjTk;

Rjk(ξ)TjTk = TjTkRjk(ξ). (3.10)

Proof. This relation is directly proved from the fact that theR-operator (2.9) depends only
on the difference of coordinates. �

Theorem 3.2.The difference operatorsDn(ξ) defined in (3.7) are integrable,

[Dl(ξ ),Dm(ξ)] = 0 for 16 l, m 6 N. (3.11)

Proof. We prove this theorem by the extended ‘railway argument’. To this end, we depict
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the relation (3.10) and the YBE (2.1) as,

R jk.�/Tj Tk Tj Tk R jk.�/=

=

j k j k

�� (3.10′)

R12.�12/R13.�13/R23.�23/ R23.�23/R13.�13/R12.�12/=

=

� 12

� 12
� 13

� 13

� 23

� 231
12 2

3

3

.

(2.1′)

The proof consists of four steps;
(1) we depict the productDm(ξ)Dl(ξ ) for l > m (the left of (3.12a)).
(2) Repeatedly using the YBE (2.1), we bring the(N − l)th line to the top (the right

of (3.12a)).
(3) Repeatedly using relation (3.10), we finish raising the(N − l)th line as depicted

in (3.12b) and the left of (3.12c).
(4) Successive application of steps 2 and 3 gives us an equation (the right of (3.12c)),

which represents the productDl(ξ )Dm(ξ).

21

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

(3.12a)
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43

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

(3.12b)

5 6

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

(3.12c)

These steps complete the proof of the commutativity,Dm(ξ)Dl(ξ ) = Dl(ξ )Dm(ξ). �

We shall compute the explicit forms of the integrable difference operatorsDn(ξ).

Theorem 3.3.The integrable difference operatorsDn(ξ) defined in (3.7) agree with the
elliptic Macdonald operators (3.6) up to constants;

Dn = αnMn for 16 n 6 N (3.13)

where operatorsDn denoteDn(ξ) (3.7) with spectral parametersξmk = (k−m)µ. Constant
αn is defined asαn = (ϑ ′1(0)/ϑ1(−µ))(N−n)n.
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In the following, we shall prove theorem 3.3, which is a main theorem of this section.
We point out that the difference operatorDn is written as

Dn =
N∏

m=N−n+1

Dm
N−n (3.14)

with Dm
j defined by

Dm
j =

( ←−j∏
k=1

Rmk(ξmk)

)
Tm. (3.15)

When we substitute the explicit form of the ellipticR-operator (2.9) into the difference
operatorDm

j , we find that the operatorDm
j is written as

Dm
j =

j∑
l=1

F(m, j ; l, l)+
( j∏
k=1

σµ(zmk)

)
Tm (3.16)

whereF(m, j ; l, q) is defined by

F(m, j ; l, q) =
( ←−

j∏
k=q+1

(σµ(zmk)+ σ(m−k)µ(zkm)ŝmk)
)
σ(m−q)µ(zlm)

( q∏
k=1
k 6=l

σµ(zlk)

)
Tl ŝml.

(3.17)

As a property of an operatorF(m, j ; l, q), we have the following identity;

Lemma 3.4.When we suppose that operatorsF(m, j ; l, q) act on the symmetric space of
z1, . . . , zj , we have

F(m, j ; l, l) = F(m, j ; l, j). (3.18)

Proof. This lemma is proved by showing an identity,F(m, j ; l, q) = F(m, j ; l, q + 1)
for arbitraryq;

F(m, j ; l, q) =
( ←−

j∏
k=q+2

(σµ(zmk)+ σ(m−k)µ(zkm)ŝmk)
)

×(σµ(zmq+1)σ(m−q)µ(zlm)+ σ(m−q−1)µ(zq+1m)σ(m−q)µ(zlq+1))

×
( q∏
k=1
k 6=l

σµ(zlk)

)
Tl ŝml

=
( ←−

j∏
k=q+2

(σµ(zmk)+ σ(m−k)µ(zkm)ŝmk)
)

×σ(m−q−1)µ(zlm)σµ(zlq+1)

( q∏
k=1
k 6=l

σµ(zlk)

)
Tl ŝml

= F(m, j ; l, q + 1)

where, in the second equality, we have used the addition formula (A.6) and an identity,
ŝmkŝml = ŝml ŝkl . �
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Note that operatorDm
j (3.15) is symmetric inz1, . . . , zj because operatorF(m, j ; l, j)

is written as

F(m, j ; l, j) = σ(m−j)µ(zlm)
( j∏
k=1
k 6=l

σµ(zlk)

)
Tl ŝml. (3.19)

Thus from lemma 3.4, we can replace allF(m,N − n; l, l) in Dn (3.14) byF(m,N −
n; l, N − n) which is given as (3.19). By definition, the lowest-order difference operator is
calculated as

D1 = DN
N−1 =

N−1∑
l=1

F(N,N − 1; l, l)+
( N−1∏
k=1

σµ(zNk)

)
TN

=
N−1∑
l=1

F(N,N − 1; l, N − 1)+
( N−1∏
k=1

σµ(zNk)

)
TN

=
N−1∑
l=1

σµ(zlN )

( N−1∏
k=1
k 6=l

σµ(zlk)

)
Tl ŝNl +

( N−1∏
k=1

σµ(zNk)

)
TN

=
N∑
j=1

( N∏
k=1
k 6=j

ϑ ′1(0)ϑ1(zjk − µ)
ϑ1(zjk)ϑ1(−µ)

)
Tj = α1M1 (3.20)

where we have supposed that the functional space is symmetric.
To compute the explicit forms of the higher difference operatorsDn for n > 1, we use

the following lemma.

Lemma 3.5.Let Dm
j be defined by (3.15). The following identity holds;

N−n+q∏
m=N−n+1

Dm
N−n =

∑
I⊂{1,...,N−n+q}

|I |=q

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩{1,...,N−n}

ŝjφI (j)

)
(3.21)

whereφI is some one-to-one mapping fromI ∩{1, . . . , N −n} to I c ∩{N −n+1, . . . , N −
n+ q}.
Proof. We prove this lemma by mathematical induction forq. First we setAq =
{1, . . . , N − n+ q}. For theq = 1 case, we obtain

DN−n+1
N−n =

N−n∑
i=1

( N−n+1∏
k=1
k 6=i

σµ(zik)

)
Ti ŝN−n+1i +

( N−n∏
k=1

σµ(zN−n+1k)

)
TN−n+1

=
∑
I⊂A1|I |=1

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)
(3.22)

whereφI is defined as

φI :

{
j 7−→ N − n+ 1 for I = {j 6= N − n+ 1}
empty forI = {N − n+ 1} .

(3.23)

Next assume that (3.21) is true, and check the case ofq + 1;( N−n+q∏
m=N−n+1

Dm
N−n

)
D
N−n+q+1
N−n =

∑
I⊂Aq
|I |=q

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)
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×
(∑
l∈A0

σ(q+1)µ(zlN−n+q+1)

( ∏
m∈A0
m6=l

σµ(zlm)

)
Tl ŝlN−n+q+1

+
( ∏
m∈A0

σµ(zN−n+q+1m)

)
TN−n+q+1

)
. (3.24)

We compute two terms on the right-hand side separately;
• the first term,∑

I⊂Aq
|I |=q

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)∑
l∈A0

σ(q+1)µ(zlN−n+q+1)

( ∏
m∈A0
m6=l

σµ(zlm)

)
Tl ŝlN−n+q+1

=
∑
I⊂Aq
|I |=q

( ∏
i∈I
k∈I c

σµ(zik)

)∑
l∈I c

σ(q+1)µ(zlN−n+q+1)

×
( ∏
m∈I c
m6=l

σµ(zlm)

)
TI∪{l}ŝlN−n+q+1

( ∏
j∈I∩A0

ŝjφI (j)

)

=
∑
I⊂Aq
|I |=q+1

( ∏
i∈I
k∈I c

σµ(zik)

)∑
l∈I

( ∏
m∈I
m6=l

σµ(zml)

)
σ(q+1)µ(zlN−n+q+1)

×TI
( ∏
j∈I∩A0

ŝjφI (j)

)
=

∑
I⊂Aq
|I |=q+1

( ∏
i∈I
k∈I c

σµ(zik)σµ(ziN−n+q+1)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)

=
∑

I⊂Aq+1
|I |=q+1
N−j+q+16∈I

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)
.

We remark that, ifI ∪ {l} = I ′ ∪ {l′}, we have

ŝlN−n+q+1

( ∏
j∈I∩A0

ŝjφI (j)

)
= ŝl′N−n+q+1

( ∏
j∈I ′∩A0

ŝjφI ′ (j)

)
(3.25)

on the symmetric space inz1, . . . , zN−n and zN−n+1, . . . , zN−n+q+1. By this remark, we
definedφI∪{l} in the third equality for a fixedl ∈ I c as follows. If l ∈ A0

φI∪{l}(j) =
{
φI (j) for j 6= l
N − n+ q + 1 for j = l (3.26)

if l 6∈ A0, there existsl = φI (n) and

φI∪{l}(j) =
{
φI (j) for j 6= n
N − n+ q + 1 for j = n.

(3.27)

• The second term,∑
I⊂Aq
|I |=q

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)( ∏
m∈A0

σµ(zN−n+q+1m)

)
TN−n+q+1
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=
∑
I⊂Aq
|I |=q

( ∏
i∈I
k∈I c

σµ(zik)

)( ∏
m∈I c

σµ(zN−n+q+1m)

)
TI∪{N−j+q+1}

( ∏
j∈I∩A0

ŝjφI (j)

)

=
∑

I⊂Aq+1
|I |=q+1

N−n+q+1∈I

( ∏
i∈I
k∈I c

σµ(zik)

)
TI

( ∏
j∈I∩A0

ŝjφI (j)

)

where in the last line, we defineφI∪{N−j+q+1} as

φI∪{N−j+q+1} : j 7−→ φI (j) for j ∈ I ∩ A0. (3.28)

Combining these two terms, we obtain the final result (3.21) forq + 1. Thus, by
mathematical induction we conclude that (3.21) is satisfied for arbitraryq. �

The point is that the expansion is performed from theleft of operators. By settingq = n
in lemma 3.5 and replacing allŝjk in the rightmost with identity operator, we complete the
proof of theorem 3.3.

We note that we have determined only the difference of the spectral parametersξjk. The
conditionξjk = (k − j)µ is realized by settingξj = α − jµ for arbitrary constantα. One
will see that this freedom plays the essential role in the D-type model.

To close this section, we show the duality of the Macdonald operators (3.6).

Theorem 3.6.The elliptic Macdonald operators have duality; the difference operators
Mn(−µ,−β) are given fromMm(µ, β) as

Mn(−µ,−β) = (−1)(N−n)nMN−n(µ, β)(MN(µ, β))
−1 for 16 n 6 N − 1 (3.29)

which shows that the difference operatorsMn(−µ,−β) commute withMm(µ, β).

Proof. This can be proved by a direct calculation. The right-hand side is computed as

αN−nαNMN−n(µ, β)(MN(µ, β))
−1 =

( N∏
m=n+1

( ←−
n∏
k=1

Rmkµ (ξmk)

)
Tm(β)

)( N∏
l=1

Tl(−β)
)

=
( ←−N−n∏

m=1

N∏
k=N−n+1

Rmkµ (ξkm)

)( N∏
l=N−n+1

Tl(−β)
)

=
( N∏
k=N−n+1

←−
N−n∏
m=1

(−1)Rkm−µ(ξmk)
)( N∏

l=N−n+1

Tl(−β)
)

= (−1)(N−n)nαnMn(−µ,−β)
where we have exchanged the indicesj andN − j + 1 sinceMn is a symmetric operator
in z1, . . . , zN . We have also used the fact thatξjk = ξlm if j − k = l − m. Observing
αn = αN−n andαN = 1, we obtain result (3.29).

Figures help us to understand the duality;

� n Mn.�;�/
�

�

�

�

�

�
=

N

· · ·

· · ·
1 N − n N − n + 1

(3.30a)
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��

−� −� −� −�

−�

−�

−�

−�

−�

−�

−�
−�

N

· · ·· · ·

�

�

�

�· · ·

· · ·· · ·

· · ·· · ·

1
1

N − n N − n + 1

�

�

�

�

==

� N−n � n MN−n.�;�/
(
MN.�;�/

)−1
=

n Nn + 1

1 n Nn + 1

(3.30b)

�

4. Elliptic Ruijsenaars model of type D

In this section, we propose a new integrable relativistic Hamiltonian system of type D (1.2).
We study a set of the D-type Ruijsenaars operatorsWn; the lowest-order operator is given
as

W1 =
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)σµ(zj + zk)
)( 3∑

r=0

grσ
r
2ν(zj )

)

×
( 3∑
r=0

ḡrσ
r
2ν̄ (zj + β)T 2

j (β)−
3∑
r=0

ḡrσ
r
−2(N−1)µ−2ν(zj + β)

)

+
N∑
j=1

( N∏
k=1
k 6=j

σµ(zkj )σµ(−zj − zk)
)( 3∑

r=0

grσ
r
2ν(−zj )

)

×
( 3∑
r=0

ḡrσ
r
2ν̄ (−zj + β)T −2

j (β)−
3∑
r=0

ḡrσ
r
−2(N−1)µ−2ν(−zj + β)

)
. (4.1)

One sees that the operator is invariant under an exchangezj ↔ zk and a reflectionzj ↔ −zj .
We impose such a restriction on the space in the following. It will be shown later that the
difference operatorW1 includes a gauge-transformed operator of the HamiltonianHD (1.2).
We shall prove that the model (4.1) is integrable, and that the higher-order difference
operatorsWn can be defined in terms of our ellipticR-operator (2.9) andK-operator (2.10).
We will also clarify the relation between the operator (4.1) and the model proposed in [2].
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First we define a set of difference operatorsYn(ξ) for ξ = {ξ1, . . . , ξN } as

Yn(ξ) =
( N∏
m=N−n+1

←−
N−n∏
k=1

Rmk(ξmk)

)

×
( N∏
k=N−n+1

k

K (ξk)

( N∏
l=k+1

Rlk(ξl + ξk)
)( k−1∏

l=1

Rlk(ξl + ξk)
)

k

K̄ (ξk)

)
. (4.2)

In this expression, we have used a ‘conjugate’ boundary operatorK̄(ξ) as

K̄(ξ) = T (−β)t̂K(ξ)t̂T (β) (4.3)

where parameters in the ellipticK-operator (2.10) are replaced bygr → ḡr and ν → ν̄.
The operatorsK andK̄ are respectively depicted as follows

j-K.�/=
j

K.�/ =
� �

j j

g;� -g;-� (4.4)

As the boundaryK-operator (2.10) satisfies the RE (2.2), we have the following proposition.

Proposition 4.1.The boundary operatorK̄(ξ) defined in (4.3) satisfies the ‘conjugate’
reflection equation;

2

K̄ (ξ2)R
21(ξ1+ ξ2)

1

K̄ (ξ1)R
12(ξ12) = R21(ξ12)

1

K̄ (ξ1)R
12(ξ1+ ξ2)

2

K̄ (ξ2). (4.5)

HereR(ξ) denotes the ellipticR-operator (2.9).

Proof. In the RE (2.2), multiplyingT1(−β)T2(−β)t̂1t̂2 from the left andt̂1t̂2T1(β)T2(β)

from the right, we obtain the conjugate reflection equation (4.5). �

The reflection equation (2.2) and the conjugate RE (4.5) can be graphically interpreted
as follows

R12.�12/
1

K.�1/R21.�1+� 2/
2

K.�2/
2

K.�2/R12.�1+� 2/
1

K.�1/R21.�12/=

=� 1

� 1

� 2

� 2� 12

� 12

� 1+ � 2

� 1+ � 2

2 2

1

1 (2.2′)
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R21.�12/
1

K.�1/R12.�1+� 2/
2

K.�2/
2- - --K.�2/R21.�1+� 2/

1
K.�1/R12.�12/ =

=

� 1

� 1

� 2

� 2

� 12

� 12

� 1+� 2
� 1+� 2

1

1

2 2

.

(4.5′)

Using the above interpretations, the difference operatorsYn(ξ) defined in (4.2) can be
depicted as follows

N

· · ·=Y1.�/

1 2 N−2 N−1

(4.6a)

N

· · ·=Y2.�/

1 2 N−2 N−1

(4.6b)

...
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N

· · ·

1 2 N−2 N−1

YN−1.�/ =
(4.6c)

N

· · ·

1 2 N−2 N−1

=YN.�/
(4.6d)

For these operators we have the following theorem, which shows the quantum
integrability.

Theorem 4.2.The difference operators (4.2) are integrable,

[Yl(ξ ),Ym(ξ)] = 0 for 16 l, m 6 N. (4.7)

Proof. Similar to the proof of the A-type Macdonald operators (theorem 3.2), we can prove
this statement by the extended railway argument.

(1) We depict the productYl(ξ )Ym(ξ) for l > m (the left of (4.8a)).
(2) By repeatedly using the YBE (2.1) and the RE (2.2), (4.5), we can move the

(N − l)th line upwards until the upper half and the lower half is exchanged (the right
of (4.8a) and (4.8b)).

(3) Successively applying the above steps forN− l+1, . . . , N−m, we arrive at (4.8c),
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which implies the productYm(ξ)Yl(ξ ).

1 2

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

(4.8a)

43

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

(4.8b)
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5

· · · · · · · · ·1 N −l N − m N

N − l + 1 N − m + 1

(4.8c)

In conclusion, we obtain an equality,Yl(ξ )Ym(ξ) = Ym(ξ)Yl(ξ ). �

Next we show that the first-order operatorW1 (4.1) agrees withY1(ξ) (4.2) when
spectral parameters{ξj } are fixed adequately.

Theorem 4.3.We set the spectral parameters asξk = −ν−(k−1)µ in the difference operator
Y1(ξ) (4.2). The elliptic Macdonald–Koornwinder operator (4.1) is then given as

W1 = Y1. (4.9)

Here we suppose that the functional space is symmetric underŝjk and t̂j .

Proof. To prove this theorem, we use the following identity which is derived using
lemma A.2.

Lemma 4.4.The ellipticR-operator (2.9) satisfies the formula,

N−1∏
m=1

RmN(ξm + ξN) =
N−1∏
m=1

σµ(zmN)−
N−1∑
l=1

σξ1+ξN (zlN )
( N−1∏
m=1
m6=l

σµ(zml)

)
ŝlN . (4.10)

We first expand the operatorY1 by using lemmas 4.4 and A.2. When we substitute the
elliptic R-operator (2.9), we obtain,

Y1 =
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)

)
j

K (ξN)ŝjN

×
(( N−1∏

m=1

σµ(zmN)

)
N

K̄ (ξN)−
N−1∑
l=1

σξ1+ξN (zlN )
( N−1∏
m=1
m6=l

σµ(zml)

)
l

K̄ (ξN)

)
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= −
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)

)
H(zj )

( N∏
m=1
m6=j

σµ(zm + zj )
) j

ˇ̄K (ξN) (4.11a)

+
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)

)
G(ξN, zj )

( N∏
m=1
m6=j

σµ(zmj )

) j

K̄ (ξN) (4.11b)

+
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)

)
H(zj )

N∑
l=1
l 6=j

σξ1+ξN (zl + zj )
( N∏

m=1
m6=j,l

σµ(zml)

)
l

K̄ (ξN)

(4.11c)

−
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)

)
G(ξN, zj )

N∑
l=1
l 6=j

σξ1+ξN (zlj )
( N∏

m=1
m6=j,l

σµ(zml)

)
l

K̄ (ξN)

(4.11d)

where

j

ˇ̄K (ξN) denotes
j

K̄ (ξN) replacingzj → −zj . Recall the definition of the boundary
K-operator in (2.4) and (2.10) as for functionsG(ξ, z) andH(z). One sees that the first
term (4.11a) is identical to the first term of (4.1). Thus, we only have to calculate the last
three terms (4.11b)–(4.11d).

As we know thatG(ν, zj ) = H(zj ) andξ1 = −ν, we have

(4.11b)+ (4.11c)+ (4.11d) =
N∑
j=1

N∏
k=1
k 6=j

σµ(zkj )

(( N∏
m=1
m6=j

σµ(zjm)

)
G(ξN, zj )

−
N∑
l=1
l 6=j

N∏
m=1
m6=j,l

σµ(zlm)(σξ1+ξN (zj + zl)G(ξ1,−zl)

+σξ1+ξN (zjl)G(ξN, zl))
) j

K̄ (ξN). (4.12)

To simplify this form, we use the fact thatG(ξ, z) is the solution of the functional
equation (2.8a) with B(ξ, z) = σξ (z),
σξ1+ξN (zj + zl)G(ξ1,−zl)+ σξ1+ξN (zjl)G(ξN, zl)

= σξN1(zj + zl)G(ξ1, zj )− σξN1(zlj )G(ξN, zj ).

We also use the identities;

−
N∑
l=1
l 6=j

( N∏
m=1,
m6=j,l

σµ(zlm)

)
σξN1(zj + zl)G(ξ1, zj ) = −

( N∏
m=1
m6=j

σµ(−zm − zj )
)
H(−zj ) (4.13)

N∏
m=1
m6=j

σµ(zjm)+
N∑
l=1
l 6=j

( N∏
m=1
m6=j,l

σµ(zlm)

)
σξN1(zlj ) = 0 (4.14)

which come from lemma A.2 and the factG(ν, zj ) = H(zj ). Using these properties, we
find that (4.12) reduces to the second term of (4.1). Thus, we obtain the explicit form of
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the difference operatorY1 as

Y1 = −
N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)

)
H(zj )

( N∏
m=1
m6=j

σµ(zm + zj )
) j

ˇ̄K (ξN)

−
N∑
j=1

( N∏
k=1
k 6=j

σµ(zkj )

)
H(−zj )

( N∏
m=1
m6=j

σµ(−zm − zj )
) j

K̄ (ξN) (4.15)

which coincides with the operatorW1 (4.1). �

The generalized elliptic Ruijsenaars model was studied in [2], where the Hamiltonian
contained nine arbitrary parameters. To see the relationship with our model (4.1), we use
the following lemma.

Lemma 4.5.For a given set of parametersνr , (r = 0, 1, 2, 3), the following identity holds;

3∑
r=0

grσ
r
2ν(z) =

3∏
r=0

σ rνr (z) (4.16)

if we set gr =
∏3

s=0
s 6=r

σ πr sνs
(0) and 2ν = ∑3

r=0 νr . Using elementary transpositions ofS4,

permutationsπr are defined asπ0 = 1I, π1 = (01)(23), π2 = (02)(13), andπ3 = (03)(12).

In the same manner, when we setḡr =
∏3

s=0
s 6=r

σ
πr s
ν̄s
(0) and 2̄ν =∑3

r=0 ν̄r for a given set

ν̄r , we have

3∑
r=0

ḡrσ
r
2ν̄ (z) =

3∏
r=0

σ rν̄r (z). (4.17)

Using these properties, we have the following lemma.

Lemma 4.6.Under the condition in lemma 4.5, we have an identity,

N∑
j=1

( N∏
k=1
k 6=j

σµ(zjk)σµ(zj + zk)
)( 3∑

r=0

grσ
r
2ν(zj )

)( 3∑
r=0

ḡrσ
r
−2(N−1)µ−2ν(zj + β)

)

+
N∑
j=1

( N∏
k=1
k 6=j

σµ(zkj )σµ(−zj − zk)
)( 3∑

r=0

grσ
r
2ν(−zj )

)

×
( 3∑
r=0

ḡrσ
r
−2(N−1)µ−2ν(−zj + β)

)

=
3∑

p=0

1

σµ(−2β)

( 3∏
r=0

σ
πpr
νr (−β)

)( 3∏
s=0
s 6=p

σ
πps

ν̄s
(0)

)

×
( N∏
j=1

σpµ (zj − β)σpµ (−zj − β)
)
. (4.18)

Proof. Both sides are functions ofzj with double periodicity. Comparing poles, we
conclude that the difference is a constant. The quasiperiodicity inβ implies the constant is
zero, which proves identity (4.18). �
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We now rewrite the difference operatorW1 (4.1). In the following we use the identities;

2
3∏
r=0

ϑr(z) = ϑ1(2z)ϑ2(0)ϑ3(0)ϑ0(0) (4.19)

ϑ ′1(0) = πϑ2(0)ϑ3(0)ϑ0(0). (4.20)

After some computations, we obtain an expression for arbitraryνr and ν̄r ,(
ϑ1(−µ)
ϑ ′1(0)

)2(N−1) 3∏
r=0

(
ϑ1(−νr)ϑ1(−ν̄r )

ϑ ′1(0)2

)
W1 =

N∑
j=1

( N∏
k=1
k 6=j

ϑ1(zjk − µ)
ϑ1(zjk)

ϑ1(zj + zk − µ)
ϑ1(zj + zk)

)

×
( 3∏
r=0

ϑr+1(zj − νr)
ϑr+1(zj )

ϑr+1(zj + β − ν̄r )
ϑr+1(zj + β)

)
T 2
j (β)

+
N∑
j=1

( N∏
k=1
k 6=j

ϑ1(zkj − µ)
ϑ1(zkj )

ϑ1(−zj − zk − µ)
ϑ1(−zj − zk)

)

×
( 3∏
r=0

ϑr+1(−zj − νr)
ϑr+1(−zj )

ϑr+1(−zj + β − ν̄r )
ϑr+1(−zj + β)

)
T −2
j (β)

−
3∑

p=0

(
π

ϑ ′1(0)

)2 2

ϑ1(−µ)ϑ1(−2β − µ)
( 3∏
r=0

ϑr+1(−β − νπpr )ϑr+1(−ν̄πpr )
)

×
( N∏
j=1

ϑp+1(zj − β − µ)
ϑp+1(zj − β)

ϑp+1(−zj − β − µ)
ϑp+1(−zj − β)

)
. (4.21)

This operator coincides with one studied in [2], where the constraint
∑3

r=0(νr + ν̄r ) = 0
was conjectured.

It is remarked that the operator (4.21) is connected to the D-type Hamiltonian (1.2) by
a gauge transformation,

W1 ≡ 1−1/2
D HD1

1/2
D . (4.22)

The function1D is given by

1D =
( ∏

16j<k6N
cV (zj + zk)cV (−zj − zk)cV (zjk)cV (zkj )

)( ∏
16j6N

cW (zj )cW (−zj )
)

(4.23a)

cV (z) = (pv;p, q2)∞
(pvw−1;p, q2)∞

(q2v−1w;p, q2)∞
(q2v−1;p, q2)∞

(4.23b)

cW (z) =
( 3∏
r=0

((−1)ar p1−br/2v;p, q2)∞
((−1)ar p1−br/2vy−1

r ;p, q2)∞

((−1)ar pbr/2q2v−1yr;p, q2)∞
((−1)ar pbr/2q2v−1;p, q2)∞

)

×
( 3∏
r=0

((−1)ar p1−br/2qv;p, q2)∞
((−1)ar p1−br/2qvȳ−1

r ;p, q2)∞

((−1)ar pbr/2qv−1ȳr;p, q2)∞
((−1)ar pbr/2qv−1;p, q2)∞

)
.

(4.23c)

We set parameters asv = e2π iz, w = e2π iµ, p = e2π iτ , q = e2π iβ , yr = e2π iνr , and
ȳr = e2π iν̄r . See (A.3) for definitions ofar andbr . From this observation, we can regard
operator (4.1) as a generalization of the D-type elliptic Ruijsenaars model.
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5. Concluding remarks

In this paper, we have proposed a new construction of difference operators acting on the
symmetric functional spaces, which can be considered as elliptic generalizations of the
Macdonald operators and the Macdonald–Koornwinder operators. Pictorial interpretations of
the operators naturally result in the integrability of the difference operators. We have shown
that these models coincide with the gauge-transformed operators of the elliptic Ruijsenaars
model and its D-type analogue.

Our technical tools are operator-valued solutions of the YBE and the RE, i.e. the
solutions acting on the functional spaces. Although these solutions are also used in the
previously known construction, the way we used them in this paper is quite different and is
applicable even for the elliptic Ruijsenaars models. In addition, the D-type operator (4.1)
is shown to be a generalization of the model proposed in [2]. Note that if we replace the
boundary operatorK(ξ) by T (−β ′)K(ξ)T (β ′), this operator still satisfies the RE (2.2) and
thus we obtain a generalization with one more parameter. As for the A-type model, we
have calculated the explicit forms of all the conserved operators and have shown that they
coincide with the higher-order Macdonald operators.

Finally we comment on the open problems. Some of them are;
• the algebra underlying these elliptic models,
• the explicit forms of the D-type higher-order conserved operators.
For the latter problem, the explicit forms were suggested in [2], and we believe this

conjecture should be dealt with in our way.
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Appendix. Fundamental functions and identities

We shall establish notations and useful identities on the theta functions [22, 23] used in this
paper.

The Jacobi theta functions are defined for=τ > 0 as,

ϑ1(z) = −i
∑
n∈Z

exp(iπ(n+ 1
2)

2τ + 2π i(n+ 1
2)z + iπn) (A.1a)

ϑ2(z) =
∑
n∈Z

exp(iπ(n+ 1
2)

2τ + 2π i(n+ 1
2)z) (A.1b)

ϑ3(z) =
∑
n∈Z

exp(iπn2τ + 2π inz) (A.1c)

ϑ0(z) =
∑
n∈Z

exp(iπn2τ + 2π inz + iπn) (A.1d)

andϑ4(z) = ϑ0(z). These functions have a kind of periodic behaviour under the translation
generated by 1 andτ . Note thatϑ1(z) is odd while the other three are even.

Let us define functionsσ rµ(z) for r = 0, 1, 2, 3 in terms of the Jacobi theta functions by

σ rµ(z) =
ϑr+1(z − µ)ϑ ′1(0)
ϑr+1(z)ϑ1(−µ) (A.2)
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whereϑ ′1(z) denotes a derivative ofϑ1(z) with respect toz. In this paper we often refer
to σ 0

µ(z) asσµ(z) for brevity. The following properties uniquely characterize the functions
σ rµ(z);
• meromorphic inµ with simple poles atZ+ τZ;
• meromorphic inz with simple poles atZ + τZ + ωr (r = 0, 1, 2, 3). The residue at

z = ωr is eπ iµbr , where each parameter is defined respectively as

r ωr = (ar + brτ )/2 ar br
0 0 0 0
1 1

2 1 0
2 1

2 + τ/2 1 1
3 τ/2 0 1

(A.3)

• doubly quasiperiodic,

σ rµ(z + 1) = σ rµ(z) σ rµ(z + τ) = e2π iµσ rµ(z). (A.4)

We remark that the elliptic functionsσ rµ(z) satisfy the formulae [22, 23],

σ r−µ(−z) = −σ rµ(z) (A.5)

σλ(z)σµ(w) = σλ+µ(w)σλ(z − w)+ σµ(w − z)σλ+µ(z) (A.6)

σ rµ(z)σ
r
µ(−z) = ℘(µ)− ℘(z + ωr) (A.7)

where℘(z) is Weierstrass’℘-function with periods 1 andτ .
To close this section, we give two lemmas.

Lemma A.1.If a functionKµ(z) satisfies the following conditions;
(1) Kµ(z) is meromorphic inµ, and a set of possible poles� is independent ofz;
(2) Kµ(z) is entire inz, whereµ ∈ D = C\�;
(3) Kµ(z) is doubly quasiperiodic,Kµ(z + 1) = Kµ(z) andKµ(z + τ) = e2π iµKµ(z),

thenKµ(z) is identically zero.

Proof. It can be proved by using the Liouville theorem. �
Lemma A.2.The elliptic function σµ(z) satisfies the generalized addition formula for
arbitraryzj andµj ;

q∑
i=1

( q∏
k=1
k 6=i

σµk (zki)

)
σ∑q

j=1µj
(zi) =

q∏
k=1

σµk (zk). (A.8)

Proof. This is proved by using lemma A.1. �
Note that lemma A.2 withq = 2 coincides with the addition formula (A.6). We use

this identity only in the caseµj = µ for all j .
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